Page 20 - Transitioning Turfgrass
P. 20

TRANSITIONING TURFGRASS


          Cropper K., Munshaw G., Barrett M., 2017. Optimum Sea-  different management practices on botanical composition,
          sonal Mowing Heights for Smooth Crabgrass Reduction in   quality, colour and growth of urban lawns. Urban Forestry &
          Tall Fescue Lawns. HortTechnology. 27(1): 73-77.  Urban Greening. 26: 178-183.
          Cushnahan T., Yule I.J., Pullanagari R.R., Grafton M.C.E.,   Leasure J.K, 1949.  Determining the species composition of
          2016. Identifying grass species using hyperspectral sensing.   swards. Agronomy Journal. 41: 204-206.
          In: Integrated nutrient and water management for sustain-
          able farming. (Eds. Currie L.D., Singh R.) Massey University,   Macolino S., Pignata G., Giolo M., Richardson M.D., 2014.
          Palmerston North, New Zealand. 14 pages.  Species Succession and Turf Quality of Tall Fescue and Ken-
                                                  tucky Bluegrass Mixtures as Affected By Mowing Height.
          Dalponte M., Bruzzone L., Gianelle D., 2012. Tree species   Crop Science 54: 1220–1226.
          classification in the Southern Alps based on the fusion of very
          high geometrical resolution multispectral/hyperspectral im-  Malenovsky Z., Mishra K.B., Zemek F., Rascher U., Nedbal
          ages and LiDAR data. Remote Sensing of Environment 123:   L., 2009. Scientific and technical challenges in remote sens-
          258–270.                                ing of plant canopy reflectance and fluorescence. Journal of
                                                  Experimental Botany 60: 2987–3004.
          Dalponte M., Bruzzone L., Vescovo L., Gianelle D., 2009.
          The  role  of  spectral  resolution  and  classifier  complexity  in   Monteiro S.T., Uto K., Kosugi Y., Oda K., Lino Y., Saito G.,
          the analysis of hyperspectral images of forest areas. Remote   2008. Hyperspectral image classification of grass species
          Sensing of Environment 113: 2345–2355.   in northeast Japan. In IGARSS 2008-2008 IEEE Interna-
                                                  tional Geoscience and Remote Sensing Symposium (Vol. 4,
          Drusch M., Moreno J., Del Bello U., Franco R., Goulas Y.,   pp. IV-399).
          Huth A., Kraft S., Middleton E.M., Miglietta F., Mohammed
          G., Nebdal L., Rascher U., Schuttemeyer D., Verhoef W.,   R Development Core Team, 2015. R: A language and envi-
          2017.  The FLuorescence EXplorer Mission Concept—ESA’s   ronment for statistical computing.
          Earth Explorer 8. IEEE Trans. Geoscience and Remote Sens-  Rascher U., Nichol C.J., Small C., Hendricks L., 2017. Mon-
          ing 55: 1273–1284.                      itoring spatiotemporal dynamics of photosynthesis with a
          Dunn J., Diesburg K., 2004. Turf management in the transi-  portable hyperspectral imaging system. Photogrammetic
          tion zone. John Wiley & Sons.           Engineering and Remote Sensing 73: 45–56.
          Earlywine D.T., Smeda R.J., Teuton T.C., Sams C.E., Xiong   Sakowska K., MacArthur A., Gianelle D., Dalponte M., Al-
          X., 2010.  Evaluation of oriental mustard (Brassica juncea)   berti G., Gioli B., Miglietta F., Pitacco A., Meggio F., Fava F.,
          seed meal for weed suppression in turf. Weed technology 24:   Julitta T., Rossini M., Rocchini D., Vescovo L., 2019. Assessing
          440-445.                                Across-Scale Optical Diversity and Productivity Relationships
                                                  in Grasslands of the Italian Alps. Remote Sensing 11: 614.
          Fang S., Tang W., Peng Y., Gong Y., Dai C., Chai R., Liu K.,
          2016. Remote Estimation of Vegetation Fraction and Flow-  Salehi H., Khosh-Khui M., 2004.  Turf Monoculture Cool-
          er Fraction in Oilseed Rape with Unmanned Aerial Vehicle   Cool and Cool-Warm Season Seed Mixture Establish-
          Data. Remote Sensing 8: 416.            mentand Growth Responses. Hort Science. 39(7): 1732-1735.
          Galvão  L.S.,  Epiphanio  J.C.N.,  Breunig  F.M.,  Formaggio   Vyas D., Krishnayya N.S.R., Manjunath K.R., Ray S.S.,
          A.R., 2011. 17 Crop Type Discrimination Using Hyperspectral   Panigrahy S., 2011.  Evaluation  of  classifiers  for  processing
          Data. Hyperspectral remote sensing of vegetation 397.  Hyperion (EO-1) data of tropical vegetation. International
                                                  Journal of Applied Earth Observation and Geoinformation
          Ghasemloo N., Mobasheri M.R., Rezaei Y., 2011. Vegetation   13: 228–235.
          Species  Determination  Using  Spectral  Characteristics  and
          Artificial Neural Network (SCANN). Journal of Agricultural   Xiao X.M., Zhang Q., Braswell B., et al., 2004. Modelling
          Science and Technology 13: 1223-1232.   gross primary production of temperate deciduous broadleaf
                                                  forest using satellite images and climate data. Remote Sens-
          Gough L., Osenberg C.W., Gross K.L., Collins S.L., 2000.   ing of Environment 91: 256–70.
          Fertilization effects on species density and primary productivity
          in several herbaceous plant communities. Oikos. 89: 428–439.  Xu X., Gu X., Song X., Li C., Huang W., 2011. Assessing rice
                                                  chlorophyll content with vegetation indices from hyperspec-
          Knot P., Hrabe F., Hejduk S., Skladanka J., Kvasnovsky M.,   tral data. Computer and Computing Technologies in Agricul-
          Hodulikova L., Caslavova I., Horky P., 2017. The impacts of   ture IV, Springer, Boston.










          16
   15   16   17   18   19   20   21   22   23   24   25